반응형
프롬스의 최근 이슈
인공위성
태양계 천문학·행성과학
Solar System Astronomy · Planetary Science |
||
태양계
|
||
태양 ☀️
|
햇빛 · 태양상수 · 흑점(밥콕 모형) · 백반 · 프로미넌스 · 플레어 · 코로나 · 태양풍 · 태양권
|
|
지구 🌍
|
지구 구형론(지구타원체) · 우주 방사선 · 지구자기장(자북 · 다이나모 이론 · 오로라 · 밴앨런대 · 델린저 현상 · 지구자기역전 · 지자기 폭풍)
|
|
달 🌙
|
달빛 · Earthrise · 만지구 · 지구조 · 슈퍼문 · 블루 문 · 조석(평형조석론 · 균형조석론) · 달의 바다 · 달의 남극 · 달의 뒷면 · 월석
|
|
식
|
월식(블러드문 · 슈퍼 블루 블러드문) · 일식(금환일식) · 사로스 주기
|
|
소행성체
|
소행성(근지구천체 · 토리노 척도 · 트로이군) · 왜행성(플루토이드) · 혜성(크로이츠 혜성군)
|
|
유성
|
정점 시율 · 유성우 · 화구 · 운석(크레이터 · 천체 충돌)
|
|
우주 탐사
|
심우주 · 우주선(유인우주선 · 탐사선 · 인공위성) · 지구 저궤도 · 정지궤도 · 호만전이궤도 · 스윙바이 · 오베르트 효과 · 솔라 세일
|
|
관련 가설 혹은 음모론
|
지구 평면설 · 지구공동설 · 티티우스-보데 법칙 · 제9행성(벌컨 · 티케 · 니비루) · 네메시스 가설
|
|
행성과학
|
||
기본 개념
|
행성(행성계) · 이중행성 · 외계 행성 · 지구형 행성(슈퍼지구 · 바다 행성 · 유사 지구 · 무핵 행성) · 목성형 행성 · 위성(규칙 위성 · 준위성 · 외계 위성) · 반사율 · 계절 · 행성정렬 · 극점
|
|
우주생물학
|
골디락스 존 · 외계인 · 드레이크 방정식 · 우주 문명의 척도(카르다쇼프 척도) · 인류 원리 · 페르미 역설 · SETI 프로젝트 · 골든 레코드 · 아레시보 메시지(작성법) · 어둠의 숲 가설 · 대여과기 가설
|
|
틀:천문학 · 틀:항성 및 은하천문학 · 천문학 관련 정보
|
1. 개요
최초의 인공위성인 소련의 스푸트니크 1호(1957)인류사상 가장 큰 우주비행체이자 인공위성인 국제우주정거장(1998~)인공위성(人工衛星, artificial satellite)은 우주에서 천체의 주위를 돌도록 만든 인공 구조물을 말한다.
인류가 만들어낸 가장 기초적인 우주선이며, 현재 발사되는 모든 인공위성의 99%는 지구 주변을 돌고 있다.
인공위성의 내부 구조는 간단하게 추진체, 컴퓨터장비, 전기공급, 뼈대 등으로 나눌 수 있다.
유사하지만 대립되는 개념으로, 탐사선이 있다.
탐사선은 인공위성처럼 천체 주변을 도는 것이 아니라, 심우주 공간으로 항행을 해 각종 과학 임무를 수행하는 데 초점을 둔 무인 우주선이다.
밤하늘에 유난히 밝은 별이 보여서 '별이 참 밝다'고 하면 '그거 인공위성이야' 같은 식으로 받아치는 경우가 은근히 많은데, 실제로는 거의 목성, 금성, 화성 아니면 평범한 1등성일 확률이 높다.
대부분의 인공위성은 겉보기 밝기가 가까운 행성이나 1등성보다 훨씬 어둡다.
물론 그런 천체들과 달리 지구에 아주 가까이 있긴 하지만 우주적인 관점에서나 가까운 것이지 정지궤도 인공위성과 지구 사이에는 지구가 세개쯤 들어간다.
그 거리에서 어지간한 행성만큼의 밝기가 나오려면 못해도 지름 수백km 크기는 되어야 한다.
극궤도 위성의 경우는 훨씬 가깝긴 하지만 이쪽은 보통 하루에도 수십 번씩 지구를 돌기 때문에 천구상에서 일반 별처럼 가만히 있는 모습은 볼 수 없다.
인류가 만들어낸 가장 기초적인 우주선이며, 현재 발사되는 모든 인공위성의 99%는 지구 주변을 돌고 있다.
인공위성의 내부 구조는 간단하게 추진체, 컴퓨터장비, 전기공급, 뼈대 등으로 나눌 수 있다.
유사하지만 대립되는 개념으로, 탐사선이 있다.
탐사선은 인공위성처럼 천체 주변을 도는 것이 아니라, 심우주 공간으로 항행을 해 각종 과학 임무를 수행하는 데 초점을 둔 무인 우주선이다.
밤하늘에 유난히 밝은 별이 보여서 '별이 참 밝다'고 하면 '그거 인공위성이야' 같은 식으로 받아치는 경우가 은근히 많은데, 실제로는 거의 목성, 금성, 화성 아니면 평범한 1등성일 확률이 높다.
대부분의 인공위성은 겉보기 밝기가 가까운 행성이나 1등성보다 훨씬 어둡다.
물론 그런 천체들과 달리 지구에 아주 가까이 있긴 하지만 우주적인 관점에서나 가까운 것이지 정지궤도 인공위성과 지구 사이에는 지구가 세개쯤 들어간다.
그 거리에서 어지간한 행성만큼의 밝기가 나오려면 못해도 지름 수백km 크기는 되어야 한다.
극궤도 위성의 경우는 훨씬 가깝긴 하지만 이쪽은 보통 하루에도 수십 번씩 지구를 돌기 때문에 천구상에서 일반 별처럼 가만히 있는 모습은 볼 수 없다.
2. 역사
최초의 인공위성은 1957년 10월 4일에 발사된 소련의 스푸트니크 1호. 이때만 해도 그냥 우주에 뭔가 쏴 올렸다는 사실만으로 상대방(미국)에게 충격과 공포를 주기 위한 목적이었지만, 점점 용도가 늘어가면서 현재는 용도에 따라 과학위성, 통신위성, 군사위성, 기상위성 등으로 나뉜다.
참고로 대한민국 최초의 인공위성은 1992년 8월 11일에 발사한 우리별 1호. 우리별 1호는 ESA(유럽우주기구)가 제작한 '아리안 로켓'에 실어서 발사했다.
북한은 스커드 미사일 기술로 자체제작한 대포동 발사체를 이용해 '광명성 1호'라는 위성을 자체 발사하려 했으나 실패했고, 2009년 4월 5일에는 대포동 2호 발사체를 이용하여 '광명성 2호'를 발사하려 했으나 또 실패했다.
결국 성공한 것은 2012년 12월 12일 은하 3호에 실은 광명성 3호가 최초. 대포동2호는 2단 분리가 안 돼서 실패했다는 주장이 언론에 돌았으나 나중에 은근슬쩍 말이 바뀌어서 분리에는 성공했으나 우주궤도 진입에는 실패했다고 수정됐다.
문제는 이게 고장나거나 실종되거나 하면 바로 우주쓰레기가 될수도 있다는 것이다.
저궤도의 경우엔 알아서 타버리는데, 문제는 정지궤도의 인공위성. 이런 인공위성의 잔해들이 위험한 이유는, 감속이 일어나지 않고 계속 에너지를 유지하는 우주공간의 특성 때문이다.
지금도 정지궤도 상에는 수많은 우주 쓰레기가 날아다니고 있으며, 만일 이 중 하나가 인공위성이나 크기가 큰 쓰레기를 파괴한다면 그 파편들이 샷건의 산탄처럼 퍼져나가, 엄청난 속도를 지닌 또 다른 우주쓰레기들이 되어 버린다.
지금도 다양한 목적의 인공위성들이 발사되고 있으므로, 이대로 그 잔해가 우주에 방치되다가는 결국 미세한 우주쓰레기의 막이 궤도상을 빠르게 회전하는 막이 되어버릴 것이며, 우주선이 정지궤도를 지나기에 너무나 위험한 상황이 올 수 있다.
인류의 우주 진출이 그대로 무산될 수 있는 실질적인 위험인 것이다.
쓰레기 처리 인공위성을 쏘아올린다는 말은 있는데, 아직 한 대도 쏘아올리지 못한 것이 현실. 그래서 보통 수명이 거의 다한 정지궤도 위성은 남은 추진체를 써서 수백 km 정도 높은 '묘지 궤도'(Graveyard orbit)에 올려 폐기한다.
2011년 9월 24일경에는 미국의 낡은 인공위성이 잔해가 되어 지상에 떨어진다고 화제가 된 바 있었다.
떨어지는 잔해만 6톤 정도로 대기권에 타고 산산조각난 잔해 중 큰 것은 100kg 정도라고. 육지에 떨어질 확률은 1/3200 정도로 인구가 많은 유라시아 지역에 떨어진다 하여 이슈가 되었다.
(관련 기사)2013년 4월 한국의 송호준이 만든 인공위성이 국내에서 청계천 상가 부품으로 제작되어 카자흐스탄에서 발사되었다.
일명 OSSI 프로젝트로, 국가만의 기밀 정보로 취급받던 인공위성의 인식을 풀어보려고 폐인같이 달려들어 5년간 제작하였고 이것을 누구나 보고 제작할 수 있도록 소스까지 공개했다.
소스 링크 기사 사실 송호준이 만들었다는 초소형 위성 정도는 다른 나라에서는 키트로도 쉽게 구할 수 있으니, 그리 대단한 기술인 것도 아니고 국가 기밀 기술 따위와는 더더욱 상관이 없으며, 국내에서도 대학생들이 동아리나 학과 활동으로 큐브위성을 설계하고 제작하는 경우가 많이 있고, 이러한 대학생 경진대회도 있을 정도이다.
그러나 대학, 단체, 기관, 국가의 주도가 아닌 개인이 직접 위성을 만들고 개인이 회사에 접촉하여 자비로 위성을 날렸다는 점을 높게 평가할 수 있다.
2023년 1월 9일, 12시 20분에서 13시 20분 사이에 미국의 ERBS 인공위성이 한반도에 추락할 가능성이 높다고 한다.
이 때문에 안전안내문자가 발송되었다.
과학기술정보통신부의 발표자료다.
참고로 대한민국 최초의 인공위성은 1992년 8월 11일에 발사한 우리별 1호. 우리별 1호는 ESA(유럽우주기구)가 제작한 '아리안 로켓'에 실어서 발사했다.
북한은 스커드 미사일 기술로 자체제작한 대포동 발사체를 이용해 '광명성 1호'라는 위성을 자체 발사하려 했으나 실패했고, 2009년 4월 5일에는 대포동 2호 발사체를 이용하여 '광명성 2호'를 발사하려 했으나 또 실패했다.
결국 성공한 것은 2012년 12월 12일 은하 3호에 실은 광명성 3호가 최초. 대포동2호는 2단 분리가 안 돼서 실패했다는 주장이 언론에 돌았으나 나중에 은근슬쩍 말이 바뀌어서 분리에는 성공했으나 우주궤도 진입에는 실패했다고 수정됐다.
문제는 이게 고장나거나 실종되거나 하면 바로 우주쓰레기가 될수도 있다는 것이다.
저궤도의 경우엔 알아서 타버리는데, 문제는 정지궤도의 인공위성. 이런 인공위성의 잔해들이 위험한 이유는, 감속이 일어나지 않고 계속 에너지를 유지하는 우주공간의 특성 때문이다.
지금도 정지궤도 상에는 수많은 우주 쓰레기가 날아다니고 있으며, 만일 이 중 하나가 인공위성이나 크기가 큰 쓰레기를 파괴한다면 그 파편들이 샷건의 산탄처럼 퍼져나가, 엄청난 속도를 지닌 또 다른 우주쓰레기들이 되어 버린다.
지금도 다양한 목적의 인공위성들이 발사되고 있으므로, 이대로 그 잔해가 우주에 방치되다가는 결국 미세한 우주쓰레기의 막이 궤도상을 빠르게 회전하는 막이 되어버릴 것이며, 우주선이 정지궤도를 지나기에 너무나 위험한 상황이 올 수 있다.
인류의 우주 진출이 그대로 무산될 수 있는 실질적인 위험인 것이다.
쓰레기 처리 인공위성을 쏘아올린다는 말은 있는데, 아직 한 대도 쏘아올리지 못한 것이 현실. 그래서 보통 수명이 거의 다한 정지궤도 위성은 남은 추진체를 써서 수백 km 정도 높은 '묘지 궤도'(Graveyard orbit)에 올려 폐기한다.
2011년 9월 24일경에는 미국의 낡은 인공위성이 잔해가 되어 지상에 떨어진다고 화제가 된 바 있었다.
떨어지는 잔해만 6톤 정도로 대기권에 타고 산산조각난 잔해 중 큰 것은 100kg 정도라고. 육지에 떨어질 확률은 1/3200 정도로 인구가 많은 유라시아 지역에 떨어진다 하여 이슈가 되었다.
(관련 기사)2013년 4월 한국의 송호준이 만든 인공위성이 국내에서 청계천 상가 부품으로 제작되어 카자흐스탄에서 발사되었다.
일명 OSSI 프로젝트로, 국가만의 기밀 정보로 취급받던 인공위성의 인식을 풀어보려고 폐인같이 달려들어 5년간 제작하였고 이것을 누구나 보고 제작할 수 있도록 소스까지 공개했다.
소스 링크 기사 사실 송호준이 만들었다는 초소형 위성 정도는 다른 나라에서는 키트로도 쉽게 구할 수 있으니, 그리 대단한 기술인 것도 아니고 국가 기밀 기술 따위와는 더더욱 상관이 없으며, 국내에서도 대학생들이 동아리나 학과 활동으로 큐브위성을 설계하고 제작하는 경우가 많이 있고, 이러한 대학생 경진대회도 있을 정도이다.
그러나 대학, 단체, 기관, 국가의 주도가 아닌 개인이 직접 위성을 만들고 개인이 회사에 접촉하여 자비로 위성을 날렸다는 점을 높게 평가할 수 있다.
2023년 1월 9일, 12시 20분에서 13시 20분 사이에 미국의 ERBS 인공위성이 한반도에 추락할 가능성이 높다고 한다.
이 때문에 안전안내문자가 발송되었다.
과학기술정보통신부의 발표자료다.
3. 인공위성의 분류
3.0.1. 군사위성
- 정찰 위성 - 해당 항목 참조.
- 항법위성위성을 사용해 지상에서 자신의 위치를 확인하기 위한 위성. GPS, 글로나스, 베이더우 등이 있다.지금은 민간용으로 풀린 지 오래라서 잘 알려져 있지 않지만 본래 군사용으로 개발된 위성이다. 그런데 대한항공 007편 격추 사건을 계기로 미국이 한창 개발 중이던 GPS를 민간에게도 개방할 것을 약속하게 된 것이다. 현재 대다수의 항법위성은 민간용과 군용 주파수를 다르게 하고 때로는 2000년 이전의 GPS처럼 민간용에 고의적으로 오차를 집어넣어 정확도를 낮추기도 한다. 다만 유럽 연합의 갈릴레오는 완전한 민간용 항법위성이다. 개발 목적 자체가 다른 항법위성이 군사용이기 때문에 군사적 목적에 따라 민간 사용이 제한되는 것을 피하기 위해서이다.항법 위성이란 게 적어도 4대 이상의 위성이 머리 위에 떠 있어야 작동할 수 있기 때문에, 최소 4대의 위성이 필요하고 전 세계에 서비스하려면 20~30기의 위성에다가 기지국까지 필요한 터라 돈이 매우 많이 든다. 미국, 러시아, 중국 정도만이 본격적으로 사용 중이거나 개발 중이다. 아니면 유럽연합처럼 연합을 해서 지지부진하게 개발하거나 일본, 인도 등과 같이 특정 지역만 서비스 가능하도록 제한적으로 개발하고 있다.
- 통신위성위성을 경유해 지상의 두 지점에서 서로 통신을 하기 위한 위성. 위성통신은 넒은 커버리지를 가져서 군용 통신으로 많이 애용하고 있고. 러시아, 미국, 중국같은 영토가 넓은 나라와 해외영토가 많은 영국과 프랑스에서는 민간용의 수요도 많다. 하지만 통신위성은 정지궤도에 위치해야 제대로 작동이 되기 때문에 발사비용이 비싸서 10여개국을 제외한 대부분의 나라에서는 민군 겸용 위성으로 만들어 쏜다.
- 궤도 무기위성에 무기를 싣거나 위성 자체가 무기인 것이다. (위에서 말했듯이) 1967년 우주 조약에 의해 우주에 대량살상무기를 설치하는 것을 금지하면서 어찌어찌해서 현재까지 만들어지지 않았다. 대량살상무기의 설치를 금지한다는 말은 곧 '대량살상무기가 아닌 무기는 궤도에 올려도 된다'는 뜻이지만 사실 굳이 궤도상에 핵무기가 아닌 다른 무기를 올려야 할 필요가 별로 없다. 그렇다고 해서 아예 우주상에 무기를 올리려는 시도가 없었던 것은 아니라서 미국의 경우 궤도상에서 발사체를 투하해 운동에너지로 지상을 공격한다는 신의 지팡이 같은 아이디어도 나왔었고 우주상에 미사일이나 레이저, 입자 빔 무기 등을 올려 적의 미사일을 요격한다는 레이건의 SDI 같은 구상도 있었다. 하지만 결국 전부 흐지부지되고 취소되었다.소련은 미국보다 더 우주 무기 개발에 적극적이어서 아예 군용 목적의 알마즈 우주 정거장을 올려서 한동안 운용했었다. 특히 알마즈-2(살류트-3)에는 23 mm 기관포가 탑재되어 접근하는 적을 공격할 수 있도록 만들어지기도 하였다. 이 포는 정거장의 폐기 전에 무인 상태에서 시험 발사까지 실행했다고 한다. 단, 다른 알마즈 우주 정거장에는 따로 무기가 들어가지 않았다.(승무원용 권총 정도는 제외) 또한 소련은 폴류스라는 공격 위성을 개발하여 발사하려고 한 적도 있다. 그런데 이건 시험 모델을 발사하다가 실패해서 파괴된 뒤로 무기한 연기되었다가 소련이 붕괴되었다.우주 무기라고 하기에 애매한 것으로는 소련의 FOBS(Fractional Orbital Bombardment System)가 있는데, 핵무기를 일단 궤도상에 올린 다음 적절한 지점에서 다시 역추진해서 지상으로 떨구는 물건. 분명 핵을 우주에 올리는 물건이지만 한바퀴 돌기 이전에 지상으로 떨궈지기 때문에 우주 조약에 의한 '우주에 대량살상무기 설치 금지' 조항에 위반되지 않는다! 이런 물건을 만든 목적은 ICBM과 같은 일반적 방법으로는 소련에서 미국을 공격할 때 미국의 감시가 치밀한 북극 근처를 통과하기 때문에, 이를 피해 감시가 상대적으로 덜 조밀한 남쪽으로 돌아서 공격하기 위한 것.
3.0.2. 민간 위성
- 지구 관측 위성말 그대로 지구를 관측하는 모든 위성을 이르는 말. 대개 카메라나 레이더를 달고 지구 표면, 대기 등을 관측한다. 넓게 보면 군용의 정찰 위성 역시 지구 관측 위성에 포함되지만, 그건 그냥 정찰 위성이라고 부르면 되므로(...) 지구 관측 위성이라는 말은 군용이 아닌 위성을 부르는 말로 쓰인다. 기상 위성 역시 지구 관측 위성의 범주에 포함되지만 같은 이유로 따로 분류된다.대개 카메라나 레이더를 싣고 지표면의 사진을 죽 찍은 뒤, 이 사진을 원하는 사용자들에게 돈을 받고 파는 식으로 사용된다. 한마디로 지금 구글 어스에서 볼 수 있는 사진들은 대부분 이 지구 관측 위성에서 촬영한 사진을 구글에서 수집하여 서비스하는 것. 이런 사진들은 단순한 지도 목적 외에도 해양 감시, 환경 오염 파악, 산림 파악, 농작물 현황 확인 등 다양하게 쓰인다.대한민국의 지구 관측 위성으로는 아리랑 위성 시리즈가 있다. 사실상 한국의 주력 위성.
- 기상위성타이로스 1이 찍은 사이클론 사진일반적으로 모든 인공위성은 대기현상을 측정하므로 기상위성이라고 할 수 있으나, 명확히 구별하면 기상관측만을 주목적으로 설계하여 발사된 위성만을 말한다. 기상위성은 저기압 또는 전선 등의 정확한 위치와 크기, 태양광선의 반사량 등을 관측한다. 기상위성도 군사위성으로 묶이는 경향이 있다. 뭐 전쟁에서 기상이란 중요한 변수중 하나니까 말이다.최초의 기상위성은 미국의 뱅가드 2였으며, 그후 타이로스 1이라는 기상위성이 쏘아올려 졌다. 대한민국의 경우에는 과거에는 자체적인 기상위성이 없어서, 일본, 미국의 정지 기상위성 관측결과를 30분 단위로 받아 사용하였다. 그러다가 마침내 2010년 기상관측위성인 천리안 위성을 발사하여, 기상정보의 자급자족이 가능하게 되었다. 항공우주연구원 천리안 위성 소개 페이지 이후 2018년과 2020년에는 천리안 위성보다 더 진보된 천리안 2A호와 천리안 2B호가 발사되어 더 자세한 기상 정보를 보내올 수 있게 되었다.
- 통신위성세계 최초의 상업용 통신위성인 인텔셋 1 얼리버드. 세계 최초의 위성 라이브 방송인 Our World와 더불어 All You Need Is Love를 방송했다.지구 상공 일정한 궤도에서 지구 주위를 회전하면서 지상 통신국으로부터 송신하는 신호를 수신하여 그 신호를 증폭 변환한 후 다시 상대 지구국에 재송신하는 우주 전파중계소 역할을 하는 인공위성으로 일반 통신뿐만 아니라, 방송신호도 송수신한다. 스카이라이프가 그 예이다. 제일 많이 알려진건 인텔셋. 최초의 통신위성은 단순한 30m짜리 알루미늄 풍선인 Echo였다. 당연히 수신하여 증폭변환하여 송신하는 현대의 통신위성과는 달리 지상의 기지국에서 쏘아올린 전파를 반사시키는 단순한 장치였다. 상업용으론 예전엔 국가간 컨소시엄이었지만 현재는 회사가 되어버린 사진의 인텔셋 1이 최초였다. 물론 당연하게도 아마추어 무선용 인공위성도 있다. Orbiting Satellite Carrying Amateur Radio, 줄여서 오스카라고 부른다. 나무위키에는 SO-50위성의 정보가 등재되어있다.이러한 통신위성을 처음 제안한 사람은 아서 C. 클라크(Arthur Charles Clarke)이다. 무선통신 전문잡지인 Wireless World 1945년 10월호에 Extra-Terrestrial Relays (지구 밖에서의 통신중계)라는 제목으로 실은 글에서 정지궤도에 통신중계용 인공위성을 올린다면 3개면 전체가 중계범위에 들어갈 수 있으며 그에 필요한 에너지도 크지않아서 태양에너지로로 작동가능할 것이라고 적었다.통신 위성을 휴대폰의 중계국으로 써먹으려고 했던 것이 바로 이리듐 계획이다. 그 외에도 INMARSAT이나 글로벌스타, 투라야 등의 위성 통신 시스템이 있다.대한민국의 통신위성으로는 무궁화 위성이 있다. KT에서 주문하여 해외 업체에서 제작 발사한 통신위성. 무궁화 5호부터는 군사 전용채널이 생기기도 하였다. 지금은 무궁화 6호 위성이라고 이름붙어졌을 위성이 대신 올레 1호라고 이름붙여져 발사된 게 최신이다. 그 외에는 SK텔링크에서 일본 업체와 공동으로 운용하는 한별이 있고, 위에서 말한 천리안 위성 역시 통신 임무도 수행중이다.무궁화3호는 단돈 5억에 홍콩의 업체에 팔려서 황금알을 낳는 거위를 팔았다는 논란을 불러왔다..
- 과학위성말 그대로 과학적 목적으로 쏘아올린 인공위성. 최초의 과학위성은 스푸트니크 1호(선전용으로 보낸 전파를 이용하여 지구 대기권을 연구하는데 공헌했다)이다. 그다음에 미국 최초로 쏘아올린 인공위성인 익스플로러 1호도 과학위성으로 밴 앨런 대를 관측하는 기여를 하게되었다. 대한민국에서는 우리별 위성과 과학기술위성이 있다. 나로호에 실었던 과학기술위성 2A, 2B와 나로과학위성 역시 과학위성.
3.0.3. 기타
- 우주정거장일종의 유인 인공위성. 자세한 것은 문서 참조.
- 탐사선일부 탐사선은 지구나 다른 천체의 궤도를 돌기 때문에 인공위성으로 분류될 수 있다.
- 우주 망원경허블 우주 망원경빛을 산란시키는 대기의 영향을 받지 않기 위해 만든 것으로 허블 우주 망원경이 대표적이다. 광학 망원경 뿐만 아니라 다양한 전자기파 대역의 우주망원경들이 존재한다. 예를 들어 지구 대기권에 가려서 못잡는 것들(X선, 감마선 등)을 잡아내는 망원경, 우주배경복사를 탐지하거나, 적외선 망원경을 띄우기도 한다. 사실 정찰 위성이나 지구 관측 위성들 역시 관측하는 대상이 지구일 뿐 우주 망원경들과 거의 비슷하다. 최초의 우주 망원경은 1990년에 발사된 허블 우주 망원경이며, 2003년에 발사된 스피처 우주 망원경, 2009년에 발사된 케플러 우주망원경 등이 있다.물론 인공위성이 아닌 우주 망원경 역시 존재한다. 지구에서 벗어나 태양 주위를 돌며 태양을 관측하는 SOHO나 멀리 라그랑주점에 자리를 잡고 관측할 예정인 제임스 웹 우주 망원경 등등.
- 큐브위성위성체인데 크기가 매우 작은 위성을 의미한다. 특성 상, 대학교 혹은 대학원에서도 개발 및 운용이 가능하며, 특수한 경우에는 고등학교에서도 개발(이 수준에서는 조립에 가깝다.)이 가능하다. 미래창조과학부에서는 매년 큐브위성경연대회를 주최하여(한국항공우주연구원 주관) 전국에서 개발 목표와 계획이 뛰어난 팀을 선정하여 개발비 및 발사비를 지원하고 있다.
3.1. 형상에 따른 분류
- 3축 안정화 위성일반적으로 박스 형상의 몸체와 전개 가능한 태양전지판으로 구성된 위성이다. 탑재체의 안테나와 센서를 지구로 지향하기 위하여 한 축을 기준으로 한 저속 회전을 제외하고는 관성적으로 안정한 위성이다. 태양전지판은 태양에 대해 관성적으로 고정될 수 있도록 위성체에 대해 반대로 회전한다. 3축 안정화 방식은 센서와 구동기의 성능에 크게 의존하지만 높은 정밀도를 갖는다. 위성의 안정화를 위해 위성 자체를 회전시키는 대신 내부에 회전하는 반작용 휠을 설치하여 회전강성을 얻어 위성을 안정화시킬 수 있다.
- 회전 안정화 위성위성을 원통형 몸체로 만들어 몸체의 축 주위로 일정한 속도로 회전시키는 방법으로 자세 안정화를 이루는 방식이다. 상대적으로 간단하지만, 안테나 센서 태양전지판이 관성목표를 지향할 수 없는 단점을 갖고 있다.
3.2. 크기에 따른 분류
종류
|
질량
|
대형위성
|
>1000 kg
|
중형위성
|
500-1000 kg
|
소형위성
|
100-500 kg
|
마이크로위성
|
10-100 kg
|
나노위성
|
1-10 kg
|
피코위성
|
0.1-1 kg
|
펨토위성
|
<0.1 kg
|
- 소형인공위성
4. 운용궤도
- 저궤도 (Low Earth Orbit, LEO)지구를 중심으로 해수면 기준 대략 160km - 2,000km 고도를 갖고 도는 궤도이다. 공간해상도가 높아야하는 정찰위성이나 지구관측위성 및 인터넷 통신용 위성은 대부분 저궤도 위성이라고 보면 된다. 국제우주정거장도 고도 350km의 상당히 낮은 궤도의 저궤도 인공위성이다. 아리랑 위성, 그리고 스타링크 등이 저궤도에서 운용되고 있다.
- 중궤도 (Medium Earth Orbit, MEO)지구 중심으로 고도 2,000km부터 35,786km 사이의 궤도이다. GPS NAVSTAR 위성이 이 궤도를 이용한다.
- 정지천이궤도 (Geostationary Transfer Orbit)정지궤도로 인공위성을 위치시키기 위해 이용하는 궤도이다.
- 지구동기궤도 (Geo Synchronous Orbit, GSO)지구 중심으로 고도 35,786km의 고도를 가지는 궤도이다. 이 궤도에서는 인공위성의 각속도가 지구 자전속도와 동일해진다.정지궤도 (Geostationary Orbit, GEO)지구동기궤도 중 경사각이 0인 형태의 궤도이다. 지표면에서 봤을 때 항상 같은 위치에 인공위성이 정지해 위치한 것 처럼 보이는 특성이 있어 지속적인 관측에 유리하므로 통신위성이나 기상위성에 주로 이용되는 궤도이다. 무궁화 위성과 천리안 위성이 이 궤도를 이용한다.경사궤도지구동기궤도 중 경사각이 있는 형태로 운영되는 궤도이다. 정지궤도는 위치를 벗어나지 않기 위해 Station Keeping을 해야 하는데 이 때 소모되는 연료가 많기 때문에 남북방향의 위치보정을 포기하고 연료를 아껴 더 오래 운용하기 위해 사용된다. 지상에서 보면 대략 8자의 궤적을 보인다. 무궁화 1호가 발사도중 발사체 부스터 분리에 문제가 생겨서 궤도에 위치하기 위해 연료를 많이 사용하였기 때문에 경사궤도로 운용하여 수명을 연장했다.
- 정지궤도 (Geostationary Orbit, GEO)지구동기궤도 중 경사각이 0인 형태의 궤도이다. 지표면에서 봤을 때 항상 같은 위치에 인공위성이 정지해 위치한 것 처럼 보이는 특성이 있어 지속적인 관측에 유리하므로 통신위성이나 기상위성에 주로 이용되는 궤도이다. 무궁화 위성과 천리안 위성이 이 궤도를 이용한다.
- 경사궤도지구동기궤도 중 경사각이 있는 형태로 운영되는 궤도이다. 정지궤도는 위치를 벗어나지 않기 위해 Station Keeping을 해야 하는데 이 때 소모되는 연료가 많기 때문에 남북방향의 위치보정을 포기하고 연료를 아껴 더 오래 운용하기 위해 사용된다. 지상에서 보면 대략 8자의 궤적을 보인다. 무궁화 1호가 발사도중 발사체 부스터 분리에 문제가 생겨서 궤도에 위치하기 위해 연료를 많이 사용하였기 때문에 경사궤도로 운용하여 수명을 연장했다.
- 묘지 궤도 (Graveyard Orbit)주로 정지궤도에서 수명을 다한 위성을 폐기시키는 궤도. 다량의 연료를 소모하여 지상으로 추락시키기 보단, 약 300km 더 높은 고도로 소량의 연료만 소모해서 타 위성을 방해하지 않게한다. 기본적으로 수명을 다하기 직전에 충분한 연료와 제어권을 확보하고 있어야 함으로 묘지 궤도로 올라오지도 못하고 폐기되는 위성도 있는편.
- 몰니야(Molniya, Молния)궤도, 툰드라궤도지구정지궤도는 적도에만 위치할 수 있으므로 극지방에서 사용이 어렵기 때문에 개발된 궤도이다. 타원궤도의 이심율을 크게하여 극지방에서 오랜 시간 머무를 수 있도록 한 궤도이다.몰니야 궤도의 원지점은 약 40,000km이고, 근지점은 약 600km인 타원고도로, 몰니야 궤도는 주기가 12시간이기 때문에 한 바퀴 돌 때 마다 지구 반대편에 위치하게 된다. 툰드라 궤도는 주기를 24시간으로 설계하도록 한 것으로 지구에서 보면 8자 모양의 궤적을 보여준다.
- 고궤도 (High Earth Orbit, HEO)지구 중심으로 고도 35,786km보다 높은 고도를 가지는 궤도이다. 이 궤도를 대체 어떤 위성이 이용할까 생각하겠지만 핵폭발을 감지하기 위한 미국의 VELA 위성이 사용하고 있다.
- 극궤도 (Polar Orbit)경사각을 90도로 가져서 궤도가 극지방을 지나가는 궤도이다. 지구가 자전을 하기 때문에 위성이 지구를 한바퀴 돌 때 마다 지구가 자전한 만큼 서쪽으로 이동하게 되므로 지구 전체를 관측할 수 있기 때문에 많은 위성들이 극궤도로 운영되고 있다.태양동기궤도 (Sun Synchronous Orbit, SSO)극궤도의 한 형태로 항상 동일한 시간에 같은 지점을 지나가도록 설계한 궤도이다. 지구가 완전한 구형이 아닌 타원형으로 생겨 위성에 가해지는 중력이 행성 중심에서 살짝 적도 쪽으로 치우쳐셔 생길 수 있는 궤도. 쓰러지기 직전의 팽이처럼 궤도가 세차운동을 하게 되어 궤도면이 지속적으로 변하게 된다. 이러한 궤도면 변화 주기를 지구 공전주기와 일치시키면 태양 관점에서 궤도면이 변하지 않는 태양동기궤도가 완성된다. 이렇게 운영하면 매일 동일한 시간에 동일한 곳을 관측할 수 있기 때문에 일별 변화를 추적하기 좋아 지구관측위성을 운용하기 효과적이다. 또한 태양전지판이 항상 태양을 볼 수 있도록 운영할 수 있어 전력관리 측면에서도 유리하다. 여러 태양동기궤도 중에서 주로 사용되는 건 고도 567km 궤도각 97.7도, 혹은 고도 894km 궤도각 99도. 아리랑 위성이 태양동기궤도로 운용되고 있다.
- 태양동기궤도 (Sun Synchronous Orbit, SSO)극궤도의 한 형태로 항상 동일한 시간에 같은 지점을 지나가도록 설계한 궤도이다. 지구가 완전한 구형이 아닌 타원형으로 생겨 위성에 가해지는 중력이 행성 중심에서 살짝 적도 쪽으로 치우쳐셔 생길 수 있는 궤도. 쓰러지기 직전의 팽이처럼 궤도가 세차운동을 하게 되어 궤도면이 지속적으로 변하게 된다. 이러한 궤도면 변화 주기를 지구 공전주기와 일치시키면 태양 관점에서 궤도면이 변하지 않는 태양동기궤도가 완성된다. 이렇게 운영하면 매일 동일한 시간에 동일한 곳을 관측할 수 있기 때문에 일별 변화를 추적하기 좋아 지구관측위성을 운용하기 효과적이다. 또한 태양전지판이 항상 태양을 볼 수 있도록 운영할 수 있어 전력관리 측면에서도 유리하다. 여러 태양동기궤도 중에서 주로 사용되는 건 고도 567km 궤도각 97.7도, 혹은 고도 894km 궤도각 99도. 아리랑 위성이 태양동기궤도로 운용되고 있다.
- 라그랑주점공전하는 천체들의 중력이 상쇄되는 지점이다. 지구-달 라그랑주 점에는 루나 게이트웨이와 같은 달 탐사를 위한 우주기지나 달과의 통신중계를 위한 위성이 고려되고 있으며, 태양 빛이 항상 가려지는 지구-태양 라그랑주 점에는 제임스 웹 우주 망원경이 L₂(라그랑주점 2)에 있다.
5. 위성의 구성
- 구조계인공위성의 뼈대로 탑재체와 각종 서브시스템들이 장착되는 구조물이다. 여러 부품들을 내외부에 장착할 공간을 제공하고, 발사체와 접속하여 발사하중 및 진동, 충격을 버틸 수 있도록 한다.
- 전력계위성에 장착되는 전력원을 공급하는 것으로 주로 태양전지 및 고성능 배터리로 구성된다. 인공위성이 지구를 돌면서 태양이 지구에 가려지는 eclipse 동안이나 사용 전력이 태양전지판에서 공급되는 전력 이상일 경우에는 배터리 전력이 사용되고, 충분한 전력이 태양전지에서 공급되면 배터리가 충전된다.
- 자세 및 궤도 제어계궤도상에서 위성체의 자세 및 궤도를 책임져 원하는 방향으로 위성을 지향하고, 자세를 안정화하며 궤도를 유지하도록 한다. 자세는 일반적으로 위성체 내부의 반작용 휠을 회전시키는 방법을 사용한다. 자이로스코프, 스타트래커(별센서)와 같은 센서가 장착된다.
- 열제어계일반적으로 지구궤도에서는 태양노출동안 섭씨 80도, 지구 그림자에서 섭씨 영하 70도의 커다란 온도변화를 겪게 된다. 또한, 태양에 직접 노출되는 부분과 반대편 사이의 온도차이가 크기 때문에 방열판, 히터를 통해 강제적으로 열을 발산하거나 가열하여 위성체 운용에 적합한 온도를 항상 유지해야 한다. 기본적으로 열 차폐막, 열담요, 코팅, 페인팅도 사용된다.
- 추진계인공위성이 궤도에 진입할때, 위치유지 및 위성지향과 같은 자세 제어시에 연료를 이용해 추진하여 원하는 궤도와 위치를 유지한다. 미약하지만 공기저항으로 인해 속도가 떨어지고, 태양과 달의 인력으로 인해 섭동이 발생하기 때문에 끊임없이 궤도를 유지하기 위해 엔진을 작동시킨다. 다른 대부분의 부품들과 달리 연료는 소모품이기 때문에 인공위성의 운영 수명은 연료에 가장 크게 의존적이다.
- 원격측정 및 명령계지구의 지상국과 데이터를 주고받을 수 있도록 하는 서브시스템이다. 또한 위성의 위치 결정을 위한 레인징 기능도 지원한다.
- 탑재체인공위성의 용도, 목적 그 자체인 서브시스템이다. 관측위성의 자외선, 가시광선, 적외선 등을 관측하는 카메라, SAR 레이더, 통신위성의 통신 중계기 등이 해당된다.
5.1. 위성의 전력원
인공위성은 전력원은 3~4가지로 분류할 수 있다.
우선 흔히 생각하는 태양 전지를 이용한 전력원이 있다.
여기에는 인공 위성이 지구의 그림자, 즉 태양의 반대쪽에 있을 때를 대비하여 배터리를 함께 탑재하고 이 2가지가 인공 위성의 주요 전력원이다.
태양 전지 외에도 핵연료를 싣는 경우가 있다.
. 핵연료는 흔히 생각하는 것처럼 실제로 원자로를 탑재하여 소형 원자력 발전으로 전력을 공급하는 것이다.
이는 냉전시대의 구소련에서 많이 사용했는데 원자로를 이용해 전력을 충분히 공급하여 이를 이용해 정찰 위성으로 지구 표면을 촬영한다거나, 혹은 (당연히 전력 소모가 큰) 레이저 무기를 가동하는 경우도 있었다.
이러한 위성으로는 코스모스 954호, 코스모스 1420호등이 있었다.
당연히 위성을 발사한 측에서도 생각이 있으니까, 위성의 수명이 다되면 탑재한 원자로만 저장 궤도라고 불리는 지구 표면 800~1000km 높이의 궤도로 올려보내도록 설계했다.
하지만, 코스모스 954호는 1978년 1월 24일에 제어시스템의 고장으로 캐나다에 추락했고 10만 제곱킬로미터의 영역을 오염 시켰다.
소련은 1970년~1999년 사이에 31기의 BUK 원자로와 2기의 TOPAZ를 미국은 1965년에 SNAP-10A를 궤도에 안착 시켰다.
또한 일반적인 원자로 이외에도 열을 방출하는 방사성 물질()을 이용하여 열전지로 전원을 만드는 경우가 있었다.
이는 미국에서 주로 사용했고 등이 있다.
우선 흔히 생각하는 태양 전지를 이용한 전력원이 있다.
여기에는 인공 위성이 지구의 그림자, 즉 태양의 반대쪽에 있을 때를 대비하여 배터리를 함께 탑재하고 이 2가지가 인공 위성의 주요 전력원이다.
태양 전지 외에도 핵연료를 싣는 경우가 있다.
. 핵연료는 흔히 생각하는 것처럼 실제로 원자로를 탑재하여 소형 원자력 발전으로 전력을 공급하는 것이다.
이는 냉전시대의 구소련에서 많이 사용했는데 원자로를 이용해 전력을 충분히 공급하여 이를 이용해 정찰 위성으로 지구 표면을 촬영한다거나, 혹은 (당연히 전력 소모가 큰) 레이저 무기를 가동하는 경우도 있었다.
이러한 위성으로는 코스모스 954호, 코스모스 1420호등이 있었다.
당연히 위성을 발사한 측에서도 생각이 있으니까, 위성의 수명이 다되면 탑재한 원자로만 저장 궤도라고 불리는 지구 표면 800~1000km 높이의 궤도로 올려보내도록 설계했다.
하지만, 코스모스 954호는 1978년 1월 24일에 제어시스템의 고장으로 캐나다에 추락했고 10만 제곱킬로미터의 영역을 오염 시켰다.
소련은 1970년~1999년 사이에 31기의 BUK 원자로와 2기의 TOPAZ를 미국은 1965년에 SNAP-10A를 궤도에 안착 시켰다.
또한 일반적인 원자로 이외에도 열을 방출하는 방사성 물질()을 이용하여 열전지로 전원을 만드는 경우가 있었다.
이는 미국에서 주로 사용했고 등이 있다.
6. 국가별 인공위성 목록
지구궤도, 태양궤도, 달궤도 등 인공위성이나 궤도를 도는 탐사선 목록만 추가하며, 궤도를 돌지 않는 탐사선 목록은 추가하지 않도록 유의한다.
6.1. 대한민국
대한민국의 인공위성
|
- 아리랑 위성 시리즈
- 천리안 위성 시리즈
- 무궁화 위성 시리즈
- 우리별 위성
- 과학기술위성나로과학위성
- 나로과학위성
- ANASIS-II
- 차세대중형위성
- 차세대소형위성
- 초소형정찰위성
- 425정찰위성
6.2. 미국
- 뱅가드 위성
- GOES 시리즈: 미국의 기상관측 위성이다.
- GPS NAVSTAR 위성
- 이리듐 계획
- 키홀 위성
- 허블 우주 망원경
- 스피처 우주 망원경
- 케플러 우주 망원경
- 제임스 웹 우주 망원경
- 스카이랩
6.3. 러시아
- 스푸트니크
- 코스모스 위성
- 글로나스
- 살류트 프로그램
- 미르
6.4. 유럽
- 갈릴레오
6.5. 중국
- 시젠 - 과학 위성 시리즈. 1971년 이래 41기가 발사되었는데 5기가 실패했다.
- 펑윈 - 기상위성 시리즈 19기가 발사되었고, 11기가 퇴역했는데, 그중 하나는 2007년 위성파괴 미사일 실험으로 파괴되었다. 이 실험이 영화 그래비티의 모티프가 되었다.
- 가오펀 - 지구 관측위성 시리즈. 29기가 발사되었고 1기가 실패했다. 2022년 현재 나머지는 모두 현역이다.
- 야오간 - 군사위성 시리즈. 116기가 발사되었고 1기가 실패했다. 2022년 현재 나머지는 모두 현역이다.
- 베이더우 - 중국판 GPS
- 톈궁 - 우주정거장
6.6. 일본
- HIMAWARI 시리즈 (MTSAT)
6.7. 다국적
- INMARSAT
- 글로벌스타
- 국제우주정거장
7. 관련 기관 및 단체
내용이 도움이 되셨으면 공감 버튼 꼬옥 눌러주세요 ♥
반응형
댓글