본문 바로가기
카테고리 없음

최근 이슈가 되는 화산에 대한 모든 것

by Nomangs 2022. 12. 16.
반응형

 프롬스의 최근 이슈 

화산

1. 개요

 

🌋 / 火山 / Volcano지구 속 마그마가 지표면을 뚫고 나와 용암 등이 쌓여 만들어진 산체이다.
지구의 화산활동 대부분은 바다 밑에서 일어나며, 바다 밑 화산의 분출물이 해수면보다 높이 쌓이면 화산섬이 된다.
독도, 제주도, 하와이, 카나리아 제도, 아이슬란드, 산토리니 등이 대표적인 화산섬이다.
법률상 화산은 '땅속 깊은 곳에 있는 마그마가 지표 또는 지표 가까이에서 분화하여 화산재·화산가스 등이 발생하는 현상'이다(지진ㆍ지진해일ㆍ화산의 관측 및 경보에 관한 법률 제2조 제3호). 법률상 화산의 정의는 지형이 아니라 화산 분출 '현상'을 뜻한다.

 

2. 지질학적 원리

 

화산은 지구의 화성 활동(igneous activity) 중 하나이다.
따라서 마그마가 만들어지고 지표까지 도달해야 한다.

 

2.1. 판 구조적 환경

 

  • 중앙해령 (mid-ocean ridge) : 가장 많은 화산 활동을 보이는 곳으로, 보통 오랜 세월동안 맨틀 물질을 마그마 생성에 소모했기 때문에, 불호정성 미량 원소가 결핍된 쏠레아이트질 현무암(depleted tholeiitic basalt)을 분출시킨다. 해령은 마그마가 만들어지는 곳과 분출하는 곳 사이의 거리가 상당히 가깝기 때문에 마그마의 분화 작용이 일어날 시간이 짧아서 현무암보다 더 진화한 화산암은 잘 발견되지 않는다. 물 아래에서 일어나는 분출이기 때문에 독특한 용암류(베개 용암)와 분기공(블랙 스모커)이 발달해있으며 화학합성을 통해 구축된 생물계에 에너지를 공급해주고 있다. 또한 이곳에서 방출된 화산 기원의 물질은 바다의 여러 조성 조절 작용을 하며 해저에 광물질을 퇴적시키는 공급원이기도 하다.
  • 대륙열곡대 (continental rift) : 대륙이 벌어지게 되면 하부의 맨틀에 상승류가 형성되면서 맨틀암에 감압이 일어난다. 이에 따라 감압용융이 일어나 마그마가 만들어지게 된다. 특히 열곡대의 벌어짐이 맨틀 플룸의 영향에 의한 것이라면, 높아진 온도에 의해 더 많은 마그마가 만들어지게 된다. 마그마에 의해 가열된 암석권은 열곡대가 더 잘 벌어지게 만들기 때문에 서로 도움이 된다. 열곡대의 마그마 성질은 너무 다양해서 아직도 많은 것이 이해되지 않고 있다. 열곡대가 빠르게 벌어지거나 지각 두께가 얇아 압력이 낮은 중심부에서는 부화된(enriched) 쏠레아이틱 현무암이 나타나지만, 압력이 높은 주변부나 발산 속도가 느린 환경에서는 알칼리 현무암 계열이 나타나게 된다. 또한 현무암과 유문암질 마그마는 곧잘 발견되지만 중간 단계로 생각되는 안산암질 화산암이 잘 발견되지 않는 것도 특징적이다.
  • 섭입대 (subduction zone) : 해양판이 다른 판과 충돌하게 되면 무거운 해양판은 종종 맨틀로 밀려들어가게 된다. 이러한 판구조적 환경을 섭입대라고 하며, 가장 복잡한 마그마 형성 원리를 가지고 있고 마그마의 성질도 다양하다. 하지만 근본적인 원인은 물의 공급인데, 섭입한 해양판에서 고압 환경에 의해 방출된 물이 판의 위쪽에 놓인 맨틀로 스며들게 된다. 맨틀암석은 물이 들어가면 용융점이 강하하게 되기 때문에 맨틀이 부분적으로 녹게 된다. 절대로 마찰이나 온도가 올라가서 녹는 게 아니다. 녹은 암석은 물과 이산화 탄소가 비교적 풍부한 마그마가 되며, 위에 얹어진 지각으로 올라오게 된다. 그곳에서 지각 물질과의 상호작용을 일으키며 섭입대 특유의 화산 활동을 만들어내게 된다. 섭입대 화산 활동의 가장 큰 특징은 폭발적인 분출인데, 풍부한 유체(물과 이산화 탄소 등)와 두터운 지각이 작용한 결과이다.
  • 열점 (hot-spot) : 맨틀 플룸이 상승하면 감압이 일어남과 동시에 해당 지역에 많은 열을 가하기 때문에 마그마가 만들어지게 된다. 이 때문에 마그마 활동이 활발하게 발생하는데, 특히 맨틀플룸의 맨 앞부분은 규모가 커서 막대한 양의 마그마를 만들어낸다. 이 때문에 대규모 화산암 지대(Large Igneous Province, LIP)가 만들어진다고 생각되고 있다. 열점에 의한 용융은 비교적 깊은 곳에서 이뤄진다는 것이 특징이며, 맨틀 플룸이 왕성할 때는 부분 용융 정도가 상당히 높아서 쏠레아이트질 마그마가 형성된다. 나중에 용융도가 조금 떨어질 때쯤이면 알칼리 마그마가 만들어진다. 보통 특정 지역에 고정되어 지속적으로 화산 활동이 일어나기 때문에, 열점은 주변을 조사하면 보통 선상의 배치를 보이게 된다. 이쯤 되면 지구의 굴뚝이나 다름없는 셈. 더 자세한 사항은 열점 항목을 참고.
  • 기타 판 내부 화산 활동 : 이외에도 화산 활동이 일어나는 가능성이 있다. 두터운 대륙 지각 아래의 암석권에서 지표로 뚫고 올라오는 킴벌라이트 화산 구조가 예로부터 보고되어 있다. 또한 맨틀의 구조적 특성 때문에 판 경계에서 조금 멀리 떨어진 곳에서도 화산이 일어날 수 있다는 해석이 제기되었으며, 백두산처럼 아직도 형성 원리에 논란이 진행 중인 경우도 있다.

 

2.2. 분출물의 종류

 

  • 화산탄과 화산 암괴 (volcanic bombs & volcanic blocks) : 화산쇄설물 중 직경이 64 mm를 넘는 것으로 쇄설성 퇴적물의 대력(cobble) 혹은 그 이상의 크기에 상응한다. 공중에 튕겨져 나갈 때 액상이었다면 이를 화산탄이라고 하며, 고체 상태의 암석 파편이었다면 화산 암괴라고 구분한다. 화산탄은 포물선을 그리면서 날아갈 때 액체였기 때문에 흔히 구형이나 유선형 혹은 그에 준하는 독특한 조직을 보이게 된다. 또한 겉부분만 굳고 내부는 아직 뜨거운 액체인 경우가 있어 겉부분이 파열되면서 '빵껍질' 같은 조직을 보이기도 한다. 화산 암괴는 많은 경우 화산이 분출할 때 파쇄하거나 밀어낸 주변 암석인 경우가 많으며 그렇기 때문에 다양한 크기의, 날카롭게 각진 암석 덩이들이 많다. '주변 암석'에는 화산체의 기반을 이루는 기반암인 경우도 있고, 같은 화산에서 이전에 분출하였던 화산 분출물인 경우도 있다. 간혹 하나의 분출에서 먼저 굳은 마그마 조각이 휩쓸려 화산 암괴를 이루기도 한다. 화산탄은 액체였기 때문에 대부분 크기가 주먹만한 크기에서 사람만한 크기에 그친다. 그러나 화산 암괴는 주먹만한 크기에서 집채만한 크기까지 다양하게 발견되는데 강력한 화산 분출에서는 집채만한 화산 암괴가 킬로미터 단위까지 튕겨져 나간다. 급작스러운 화산 분출로 화산탄이 날아들면 고개를 돌리거나 머리를 감싸는 것보다는 그것을 잘 관찰해 궤도를 파악하여 몸을 틀어 피해야 한다. 이 방법은 이론에 그치는 것이 아니라 실제로 화산학자들이 분화구 근처에서 일하다 예기치 못한 소규모 분출을 겪을 때 이 방법으로 화산탄을 피한다. 이것은 영화 볼케이노에서도 소개되었었다.
  • 화산력 (volcanic lapilli) : 화산쇄설물 중 직경이 2-64 mm인 경우를 말한다. 다양한 화산쇄설성 분출에 수반되는 입자들로서, 공중에서 액체였던 마그마 파편들인 경우, 물방울이나 구, 버튼 모양 등으로 발견된다. 크기가 중간 정도의 크기인 만큼 거의 모든 화산쇄설물 퇴적층에서 발견된다고 말할 만큼 화산 분출에서 흔하게 발견되고 또 만들어지는 양도 무척 많다. 마그마가 물과 반응해서 분출하는 수성분출의 경우, 화산재가 주변의 물기에 의해 엉겨붙으면서 동그란 구형의 덩이가 만들어지기도 하는데 이를 특히 첨가화산력(accretionary lapilli)라고 한다.
  • 화산재 (volcanic ash) : 화산쇄설물 중 직경이 2 mm 이하인 것이다. 화산재가 가장 많이 만들어지는 방식은 폭발적인 화산 분출이 일어날 때이다. 마그마의 점성이 상당히 올라가고 내부의 기체 함량이 높은 상태에서, 감압이 일어나게 되면 마그마는 끓어오르게 된다. 물과 달리 마그마는 기본적으로 녹은 암석이므로 끓어오를 때 만들어지는 많은 기체 방울에 의해 마그마는 산산히 부서진다. 그러면서 엄청난 양의 마그마가 파편화(fragmentation)되는데, 이 파편들이 화산재가 된다. 이런 경우 전형적인 화산재는 녹은 암석이 급랭한 파편으로서 보통은 작고 날이 선 유리 조각이라고 생각하면 된다. 이러한 마그마 파편화는 안산암질에서 유문암질에 이르는 산성질 마그마 분출에서 자주 발견되나, 드물게 더 고철질 마그마에서도 일어난다. 또한, 용암이 주를 이루는 하와이식 분출일지라도 바람이나 휘발성 기체의 응력에 의해 화산재가 만들어지기도 한다.

 

3. 분출(eruption)의 종류

 

모든 화산이 항상 쿠쾅하고 터지는 것은 아니다.
폭발을 일으키는 직접적인 원인은 마그마 내에 녹아있는 휘발성 성분, 즉 가스(대부분 수증기와 이산화 탄소)의 압력 때문인데, 중앙해령 현무암질 마그마의 경우, 고온의 낮은 압력에서 탈기된(degassed) 채로 분화하여 상대적으로 조용히 분출한다.
반대로 규산염 비율이 높아 점성(viscosity)이 높은 마그마, 혹은 물이나 빙하와 접촉한 마그마는 강력한 폭발을 수반하여 위험하다.
전자의 전형적인 예로는 아이슬란드 화산 등이 있으며, 후자의 예는 미국의 세인트 헬렌즈와 필리핀의 피나투보 등이 있다.
이러한 구분은 반드시 엄밀한 것은 아니며, 단 1번의 폭발이었는가, 지속된 분출인가, 지속된 폭발인가 여부에 따라서도 달라진다.
겉모습은 비슷하지만 전혀 다른 과정을 거쳐 나온 화산도 있다.
이런 때는 조사하면 구성암석이나 지질구조가 전혀 다르다.
심지어는 한 화산에서 시기에 따라 점성(viscosity)이 다른 용암이 나오기도 한다.
예컨대 한라산의 경우에는 용암 분출(lava flow)과 폭발형 분출(explosive eruption)이 모두 일어난 기록이 있다.
단일한 화산이라도 다양한 방식의 분화를 보여줄 수 있다.
예컨대 일본의 후지산도 커다란 성층 화산이지만, 최근 분출은 용암이 흐르는 방식이 주를 이루었다.
사람들에게 많이 알려진 화산 분류 방식은 화산이 활동하는지의 여부에 따라 사화산, 휴화산, 활화산으로 구분하는 것이다.
그렇지만, 오늘날 화산학계에서는 이러한 임의적이고 불확실한 분류는 지양하고 있는 추세이다.
왜냐하면 화산마다 활동 주기가 모두 다르고 주기 자체가 불규칙한 경우가 많기 때문이다.
사화산이라고 해도 언제 다시 활동을 시작할지 확신할 수 없는 것이 화산이다.

 

3.1. 분출 양상에 따른 분류

 

  • 하와이식: 용암이 주를 이루는 것으로 보통 조용히 분출하는데 말 그대로 하와이가 대표적인 예이다.
  • 스트롬볼리식: 질척한 화산탄과 화산 가스가 펑펑펑 터지는 것으로 짧은 시간 내에 여러 차례 단발성으로 터지는 게 특징적이다. 화산탄이 흩날리는 것이 아름답기 때문에 사진 작품으로 많이 활용되는 분출이다.
  • 불칸식: 스트롬볼리식처럼 짧은 시간 내에 단발성으로 터지지만 주로 분출되는 게 용암이 아니라 화산재이다. 좀 더 폭발성이 강하다.
  • 펠레식: 화산돔의 붕괴, 고밀도 화산쇄설류의 강하 등으로 특징지어지는데, 무척 위험하지만 플리니식 분출보다 그 강도는 보통 약하다.
  • 플리니식: 불칸의 상위버전이라고 생각하면 되는데, 막강한 폭발로 인해 수직 분출 기둥(eruption column)이 구축되는 것을 말한다. 보통 플리니식 분출이 일어나면 주변은 반드시 대피해야한다. 다량의 화산재와 화산 가스, 화산탄이 뒤섞여 터져오르며 심한 경우 화쇄류가 함께 발생하게 된다.

 

3.2. 화산 분출물의 양에 따른 분류

 

화산 규모에 따른 분류
VEI
분출량
종류
비고
0
104m3 이하
스트롬볼리식, 하와이식
1
104m3 ~ 106m3
스트롬볼리식, 하와이식
 
2
106m3 ~ 107m3
불칸식, 스트롬볼리식, 하와이식
 
3
107m3 ~ 108m3
펠레식, 불칸식, 준-플리니식, 하와이식
화산 분출이 극도로 위험해지기 시작하는 단계.
4
108m3 ~ 1 km3
펠레식, 준-플리니식, 플리니식
분출 기둥이 성층권까지 치솟는 단계. 이 규모의 분출부터는 본격적인 재앙이 일어난다.
5
1km3 ~ 10km3
펠레식, 플리니식
재난 영화속 모습이 실제로 일어나는 단계.
6
10km3 ~ 102km3
플리니식, 초-플리니식
전설적인 화산 분출로 기록되는 단계.
7
102km3 ~ 103km3
초-플리니식
인류가 목격한 가장 강력한 폭발단계.
8
103km3 이상
초-플리니식
인류가 경험한 적이 3번밖에 없는 단계.

 

4. 화산의 종류

 

화산 분출의 종류와 화산의 종류는 전혀 다른 이야기다.
화산/종류 참고.다.

 

5. 재해

 

화산 폭발이 크게 일어나면 화산재를 제외하면 피해가 집중되는 지역은 산 주변의 화산 분출물이 퇴적되는 부분에 집중된다.
물론 화쇄류 등의 직접적인 타격을 받은 곳은 초토화된다고 보면 된다.
물론 화산 주변의 다른 부분도 멀쩡한 것은 아니라서 상당한 피해(화산재가 엄청나게 쌓이거나, 화산탄이 날아오는 등)를 입고, 화산에서 나오는 유독가스로 질식할 수도 있다.
설상가상으로 화산폭발은 이런 직접적인 피해보다도, 화산재의 피해(항공기를 비롯한 교통 수단 대부분의 마비 및 오작동, 햇빛 차단 및 작물 피해)가 아주 넓은 범위로 상당한 기간 동안 지속되므로 한번 큰 폭발이 일어나면 피해가 막심해진다.
즉 화산은 피해의 종류도 다양하고 규모도 다양하기 때문에 그것을 관측하고 예측하며 피해 양상을 따지고 수습하는 분야가 따로 있다.
대체로 산체의 규모는 분출형(순상) 화산이 훨씬 크지만, 폭발형(성층) 화산이 압도적으로 큰 피해를 입힌다.
용암이 조용히 나오면 강처럼 낮은 곳으로만 흐르니 피하면 그만이다.
이런 화산들은 심지어 용암 근처까지 가서(물론 방열복은 입고) 실험을 할 수 있을 정도다.
하지만 폭발형은... 아래 열거한 화산 재해는 대부분 폭발형 화산이 부른 것들이다.
의외로 화산 폭발의 직접적인 인명피해는 적다.
대부분의 화산 분출이 규모가 어마어마하지는 않기 때문이기도 하며, 터지기 전에 전조증상이 워낙 화려해 대부분 미리 대피해서다.
물론 매우 강력한 폭발이나, 교통, 통신이 열악한 과거에는 폼페이라는 도시가 날아가기도 했다.
오늘날에는 화산보다는 지진의 인명피해가 압도적으로 크며, 화산성 지진 역시 이에 따라 요주의 관심 대상이 되고 있다.
재해의 규모가 너무 크면 아예 역사의 방향에 영향을 끼치기도 한다.
좋은 예가 1783년의 화산 폭발이다.
1783년에 아이슬란드와 일본에서 각각 1개, 2개의 화산이 터진 적이 있었는데, 이로 인해 화산재가 세계 곳곳으로 퍼져갔다.
당시 기록에 따르면 화산재가 식물의 잎에 내려앉아 광합성을 방해해서 농작물이 대규모로 말라죽었고, 하늘에선 유황 냄새가 났으며, 원인 분분명의 호흡기 질환이 속출했다고 한다.
유럽에선 화산재가 너무 짙게 끼어 마차 사고가 빈번했고, 민심이 흉흉해지며 종말론이 기승을 부렸다.
여기에 4년 연속 흉작이 들며 식량부족에 시달렸다.
그리고 이 모든 것들은 프랑스 대혁명으로 이어졌다.
화산 분출에 의한 재해는 주로 1차적인 재해와 2차적인 재해로 나뉜다.
1차적인 재해는 화산 분출 현상 그 자체에 의한 피해이며, 2차적인 재해는 화산 분출 이후 추가적인 요소가 가미되어 일어나는 현상들이다.

 

5.0.1. 화산 가스

 

보통 화산재나 화산쇄설류, 혹은 용암의 피해에 비해 주목을 받지 못한다.
이는 화산가스가 유독하려면 어느 정도 이상의 농도를 유지해야 하기 때문. 하지만 화산가스는 애초에 폭발형 화산을 일으키는 근본 원인이다.
더군다나 수틀리면(...) 무서운 피해를 만들어내기도 하는데, 그 사례가 니오스 호수(Lake Nyos)이다.
아프리카 카메룬에 있는 니오스 호수는 오쿠(Oku) 화산지대에 놓여있다.
호수 밑바닥에서 새어나온 화산 기원의 이산화 탄소가 쌓이고 쌓이다가 호수 벽 일부에 작은 산사태가 일어나자 연쇄반응을 일으켜서 과량의 이산화 탄소가 호수 밖으로 모조리 빠져나왔다.
사달이 난 것은 해가 진 뒤. 50미터 두께의 이산화 탄소 기체는 바닥을 훑으면서 시속 30~50km 속도로 전진했다(물론 눈에는 보이지 않는다). 그리고는 인근 3개의 작은 마을을 덮쳐 잠을 자고 있던 1700명을 질식사시키고 3500마리의 가축을 죽였다.
살아남은 많은 사람들은 이산화 탄소 질식 때문에 마비 등의 심각한 증상을 보였다.
현재 니오스 호수는 하층부의 물을 위로 뿜어내는 식으로 이산화 탄소를 빼내고 있다.

 

5.0.2. 화산탄

 

 

 

5.0.3. 화산재

 

해당 문서 참고.종합적으로 볼 때 가장 큰 피해를 입히는 것. 화산이 폭발하면 다량의 화산가스와 함께 무지막지한 양의 잿더미가 함께 뿜어져나오는데 근처에 두껍게 쌓이는 큰 입자의 화산재와 대기를 타고 넓게 확산되는 작은 입자의 화산재로 나뉜다.
큰 입자의 화산재는 멀리 퍼지진 않지만 화산이 폭발한 일대에 매우 두껍게 눈처럼 쌓여서 문제고 작은 입자는 기관지에 문제를 일으키거나 멀리까지 피해를 확산시켜 문제다.
화산 주위의 식물들은 화산재를 뒤집어 쓰기 때문에 고사하기 쉽다.
거기에 농경지라도 있으면 망했어요.화산재는 상술했듯 주위 지역에 눈처럼 쌓이는데 문제는 얼음의 비중이 0.9인데 반해 화산재의 비중은 약 2.7로 3배나 무거운데다 일반적인 눈이랑은 비교도 안될 정도로 두껍게 쌓이기 때문에 눈이 쌓이는 것에 비해 피해가 막심하다.
화산재가 쌓인 무게를 못 견디고 지붕이나 차량이 무너지는건 기본이고 비가 와서 높은 지대에 쌓인 화산재가 진흙처럼 변하면 흙사태를 일으킬 수 있는데, 이를 라하르라고 한다.
마침 화산 가스의 대부분은 수증기가 차지하기 때문에 화산 분출 후에는 비가 올 가능성이 높아지기 때문에 더욱 위험하다.
쉽게 가라앉지 않는 더 작은 입자들은 약 10km 높게 올라가 대기 중에 떠돌게 된다.
이는 여러 환경적인 문제를 일으킨다.
화산 주변은 말할 것도 없고 대기를 타고 넓게 퍼진 화산재에 의해 멀리 떨어진 일부 식물들까지 화산재를 뒤집어쓰고 죽어버려서 일대가 황무지가 된다.
세인트헬렌스 화산이 터졌을 때 일대의 국립공원이 죄다 사막처럼 변한 것이 예. 하지만 화산재에 포함된 풍부한 무기 염류 덕분에 오랜 시간이 지나면 풍화 작용이 일어나 지력을 향상시키기 때문에 심하지 않은 정기적인 화산폭발은 오히려 농업에 도움을 주기도 한다.
남태평양과 오세아니아의 섬들이 화산재의 혜택을 입은 경우. 세인트 헬렌스 화산 또한 인근에 대규모 침엽수림이 있던 곳이라, 초토화된 대지는 수 년이 되지 않아 회복되기 시작했다.
다만 화산재는 인산과 결합력이 강하므로 식물이 화산재와 결합된 인산을 이용할 수 없어져서 인산비료를 어지간히 많이 뿌리지 않으면 화산재 베이스 토양은 인산부족에 시달린다.
화산재는 항공기 운항에도 지대한 영향을 끼친다.
현대의 항공기들은 주로 제트 엔진을 사용하기 때문에 화산재에 취약하다.
제트 엔진은 외부 공기를 빨아들여 압축했다가 배출하는 힘으로 추진력을 얻는데, 공기를 빨아들이면서 화산재까지 흡입하면 엔진이 망가질 수 있다.
이 때문에 항공기가 비행 중에 화산폭발 인근 지역을 비행하게 되면 혼비백산 도망할 수밖에 없다.
대표적인 사례로 영국항공 9편 사건, KLM 867편 사고 등이 있다.
전자는 인도네시아 갈룽궁 화산 폭발의 여파에, 후자는 리다우트 화산 폭발에 휘말려 추락할 뻔했으나, 두 비행기 모두 엔진 재시동에 성공하여 희생자 없이 전원 생존했다.
이 사건들 이후 화산 폭발에 대비한 비행 규정이 대대적으로 마련되었다.
다.

 

5.0.4. 화산쇄설류 (火山碎屑流, pyroclastic flow)

 

자세한 건 문서 참조.화산이 폭발할 때 그 폭발력으로 인해 지반이 무너지거나 측면분출로 인해 다량의 화산재, 화산가스가 비탈을 따라 산사태처럼 쏟아져내리는 현상이다.
화산재와 화산쇄설류 등, 화산쇄설물이 관여한 현상을 화산쇄설성 활동(pyroclastic activity)라고 한다.
줄여서 화쇄류(火碎流)라고도 하고 학술적으로는 화산쇄설 밀도류(Pyroclastic density currents, PDCs), 혹은 1902년 프랑스령 마르띠니끄섬의 몽펠레 화산의 기록으로부터 "누에 아르당뜨(Nuée ardente, 熱雲)"이라고도 한다.
화산쇄설류와 비슷하지만 가스 함량이 더 많아 밀도가 낮으면 pyroclastic surge라고 구분하여 부른다.
산사태의 화산 버전으로 화산 분출시 가장 위험한 현상이며, 발생 원인은 다양하다.
플리니식 분화로 인한 분연주(eruption column) 붕괴, 용암돔(lava dome)의 중력에 의한 붕괴, 스트롬볼리식 또는 불칸식 분화 중 화구에서 쇄설물의 방출, 화구나 화산 사면의 측면 폭발과 그에 따른 측면 분출 등이 포함된다.
화산쇄설류는 발생 당시의 에너지와 환경에 따라 다양한 규모, 압력, 온도 및 속도 분포를 보인다.
기록 상의 최대 속도는 700km/h에 이르며, 측정된 온도는 1,000도(1,273K)를 넘기기도 한다.
최대 속도 기록은 1980년 미국 세인트 헬렌스 화산의 측면 분출이 보유하고 있다.
빠른 속도와 커다란 규모 때문에 화산쇄설류의 진행 경로에 있으면 사실상 피할 수 없다.
화산쇄설류의 무지막지한 속도는 내부의 엄청난 압력 때문이며, 방출되는 기압이 윤활제 역할을 하여 재빠르게 전진할 수 있다.
얼핏보기엔 먼지 구름 덩어리에 불과해 보일지 모르나, 고압의 흐름이 빠르게 팽창하며 전진하기 때문에 화산쇄설류의 파괴력은 실로 대단하다.
힘이 세고 속도가 높아 그 안에는 사실 집채만한 돌덩이도 함께 굴러다니고 있다.
화산 폭발 시 신속하게 최대한 멀리 대피해야 하는 가장 큰 이유.화쇄류는 큰 규모의 폭발성 분출에 대부분 동반되기에, 보통 역사에서 괄목할만한 강력한 화산 분출에는 화쇄류에 의한 재해 사례가 포함된다.
화쇄류에 의한 피해가 부각되는 "대표적인" 재해 사례는 다음과 같으며, 구체적인 설명은 각 항목에 기술되어 있거나 기술될 것이다.
- 79년 베수비오 화산 분출: 폼페이를 떠올리겠지만 사실 화산쇄설류의 피해가 가장 컸던 곳은 헤르쿨라네움(Herculaneum)이었다.
- 1902년 몽펠레 화산폭발: 엄청난 사상자 및 피해와 안일한 대처 등으로 화산쇄설류 재해를 다룰 때 반드시 언급되는 대표적인 사건이다.
- 1980년 세인트 헬렌스 화산 측면 분출: 예측하지 못했던 강력한 분출, 미국에서 일어난 사건, 화산학자가 죽었다는 점 등으로 유명하다.
- 1995~2000년 수프리에르 힐즈(Soufrière Hills) 화산 활동: 쉴새 없이 화산쇄설류가 일어난 덕에 화산학의 많은 발전이 있었다.
- 1991년 운젠 화산 분출: 무려 3명의 저명한 화산학자가 급작스런 화산쇄설류에 목숨을 잃었다.
그중에는 세인트 헬렌스 화산 연구에 참여했다 며칠 차이로 목숨을 건졌던 학자도 있었다.

 

5.0.5. 용암

 

많은 사람들이 화산의 무서움을 생각할 때 용암을 떠올리지만 용암 자체만으로 인한 인명 피해는 크지 않다.
그 이유는 크게 2가지인데, 용암은 일단 상대적으로 피하기 쉽고 용암을 주로 내뿜는 분출형 화산들은 대체로 오랫동안 분출을 지속한 경우가 많기 때문에 대비하기 쉽다는 것이다.
그래도 여전히 위험하고, 한번 흐르기 시작하면 방향을 바꾸기가 힘드니 문제다.
온도가 높게는 섭씨 1200도라서 온갖 것은 닿으면 타거나 녹는다.
화산의 특성에 따라 점성이 다른데, 점성이 높을수록 온도는 더 낮지만 그래도 800도는 넘는 수준이고, 점성이 낮을수록 흐르는 속도가 빠르고 온도가 높아 화산 인근 사람들에게는 매우 위험하다.
시속 120km로 흐른 때도 있었다고 한다.
보통 점성이 낮은 용암은 토마토 케첩과 비슷한 점성을 보인다고 하며, 점성이 높을 경우에는 땅콩버터와 비슷하다고 한다.
용암 문서 참고.다.

 

5.0.6. 화산성 지진

 

화산이 분출하면서 지진도 동반하는데 이를 화산지진이라 하며 판에서 나는 지진보다는 위력은 약하다.
다만 화산폭발지수 7이상의 화산이면 규모 6 이상이, 옐로스톤같은 초화산의 경우에는 규모 7 이상의 지진이 날 수도 있다.
물론 대부분의 화산지진은 지진 자체의 위력보다는 화산 폭발의 전조를 경고하는 역할을 한다.
화산성 지진은 마그마가 상승하면서 주변 지각에 힘을 가하면서 생기는 것들이다.

 

5.0.7. 암설류(Debris flow)와 사태(landslide)

 

화산이 분출하게 되면 주변 지반이 화산성 지진 등으로 불안정해질 수 있다.
이 때문에 산사태가 동반되는 경우가 있다.
가장 극단적인 산사태의 사례는 세인트 헬렌스 화산 1980년 분출이었다.
또한 분출하는 화산쇄설물의 양이 어마어마하기 때문에, 이 퇴적물이 재동(re-work)되면서 움직이게 되면 이 자체도 하나의 사태가 된다.
대부분의 화산쇄설물을 차지하는 것은 화산재이기 때문에, 이 경우 사태는 암석사태(debris flow)라기 보다는 진흙사태(mudflow)가 된다.
화산쇄설물에 의한 진흙사태는 특히 라하르(Lahar)라고도 하는데, 이는 인도네시아에서 부르는 이름이 널리 알려진 것이다.
가장 끔찍했던 라하르 사건은 1985년 콜롬비아의 네바도 델 루이스 화산 분출이었으며 28000여명의 사망자가 발생했다.

 

5.0.8. 쓰나미(Tsunami)

 

무척 드물지만, 화산섬의 부분적 붕괴나 해산의 분출 등으로 유발되는 해일도 가능하다.
이는 화산의 위치, 동반되는 지진의 성격 등 여러 요인이 함께 작용해야 한다.
크라카타우 화산과 아낙 크라카타우가 일으킨 쓰나미가 유명하다.
2022년 통가 해저 화산 폭발이 일으킨 쓰나미는 일본과 미국까지도 도달하였다.

 

5.0.9. 산성비

 

화산이 분출하는 아황산 가스에 의해 산성비가 내리기도 한다.

 

5.0.10. 기후변화

 

화산 분출로 인한 화산 가스에는 이산화황과 염소, 이산화 탄소가 포함된다.
이들은 기후변화 인자이기 때문에 단기적인 기후 변화를 유도할 수 있다.
특히 이산화황과 같은 물질이 성층권에 섞이게 되면 대류권의 온도가 강하하게 된다.
초화산급인 탐보라 화산의 경우에는 심각한 변화를 일으킨 적이 있다.
피나투보 화산의 경우에도 전지구 대류권 온도를 내렸다.
이 방식으로 지구온난화를 해결하려는 연구가 있는데 자세한건 지구공학 항목참조.지질학적 기록에 따르면, 전 세계 생물권을 뿌리째 뒤흔들 괴력을 발휘하기도 한 것으로 알려져 있다.
특히 페름기말 멸종이 대규모 화산 분출에 의한 것으로 생각된다.
시베리아 화산대지(trapp) 분출이 재수없게 토탄층을 건드려 유독가스와 이산화 탄소 배출이 너무 심각했기 때문이라고 생각되고 있다.
이외에도 다른 대량멸종에도 우연인지 필연인지 대량 화산 분출이 관여하고 있다.
물론 이 때 말하는 대량 화산 분출은 보통 대규모 화산암 지대(Large Igneous Province, LIP)라고 하여, 인류가 상상할 수 없는 규모의 분출이다.

 

5.0.11. 기타 재해

 

2차적인 재해에는 건강상의 문제, 화재, 건물의 붕괴, 농작물 피해 등이 포함된다.
보통 화산 재해를 이야기할 때 사람들이 신경쓰지 않지만, 실제로 일어나는 가장 흔한 피해들 중 하나이기 때문에, 실제 화산 재해에서 중요한 요소들을 이루게 된다.

 

5.1. 한국의 화산 활동

 

중생대 시절 한반도는 일본과 붙어 있는 대륙의 연변 지역이었다.
약 1~2억년 전에는 한반도 아래로 태평양 판이 섭입하고 있었으며, 수많은 화산활동이 있었다.
이 결과 한반도에는 당시 산성질 마그마가 식어 만들어진 화강암이 널리 분포하고 있다.
그러나 이후 지구조 환경이 본격적으로 변하면서 오늘날 한반도는 섭입대 환경과 상당히 동떨어진 상태로 유지되고 있다.
당시 한반도 동남부는 일본과 붙어있던 상태로써 지질학적으로 일본과 혼연일체나 마찬가지였고, 옛 태평양판인 이자나기 판이 섭입된, 일본과 이어진 화산대에 속했으며 백악기 말엔 시호테알린부터 한반도 동남부를 거쳐 중국 광둥성 동쪽에 이르는 거대한 화산벨트가 있었던 것으로 추정된다.
장산범으로 유명한 부산의 장산도 지금은 600m 높이의 평범한 산이지만 당시엔 높이 3,000m 이상에 5km 둘레의 초대형 화산체였을 것으로 추정될 정도.신생대, 그 중에서도 특히 최근까지 활동이 있어서 번듯한 화산체를 유지하고 있는 경우는 한반도에 제주도, 백두산, 울릉도, 독도 등이 있으며, 북한에 위치해 아직 지질학적 연구가 미미한 오리산의 경우도 포함될 수 있다.
이들은 모두 신생대 제4기 이내에 화산활동을 보였던 경우에 속한다.
신생대에는 한반도 전역에서 크고 작은 화산활동들이 있어왔음이 알려져 있으며, 앞서 언급한 화산 활동 이외에도, 보은, 철원, 포항, 강원도, 함경도 등에서 해당 시기의 화산활동 흔적이 소규모로 남아있다.
대부분은 1400 만년 이내의 시기에 분출한 알칼리 현무암질 용암류로 구성되는데, 일부 더 오래된 화산 활동은 준알칼리 계열의 특성을 보여주며, 포항에 대표적인 암상이 분포한다.
이 때문에 화산호 환경에서 배호환경으로 한반도 지구조 환경을 변화시킨, 동해 확장과 밀접한 관련이 있으리라 여겨지고 있다.
현재 한반도는 동해 확장이 멈추고 다시 좌우 압축 응력장을 받게 되면서 사실상 화산 활동을 지속할만한 지구조적인 환경을 거의 상실한 상태다.
그러나 화산 활동은 지구조적 환경이 변해도 꽤 오랜 시간동안 유지되는 경향을 보이는 것이 알려져 있다.
특히, 제주도, 울릉도 및 백두산의 주요 산체는 약 5천 년 이내에 분출 활동이 있었으며, 백두산의 경우에는 수 백 년 이내까지 화산활동이 있었음을 암시하는 문헌 자료가 남아있다.
동해에는 원래 수천 만 년에 걸쳐 수많은 화산들이 있었으나, 대부분이 수장되어 있고 현재는 울릉도와 독도만이 남아있다.
2006년 백두산에서 산발적인 지진 활동이 급증하면서 백두산 화산 분출에 대한 경각심이 높아졌다.
백두산은 한반도에 분포하는 화산체 중에서 가장 폭발적인 분출 기록을 가지고 있기 때문에 언론의 관심을 더 많이 받았는데, 당시 백두산은 선행 연구가 무척 드물어 화산 분출을 점친다는 것이 사실상 불가능에 가까운 상태였다.
현재는 백두산에 대한 연구 결과가 조금씩 누적되고, 모니터링 시설이 조금씩 늘어나고 있다.
특히 백두산은 그 규모에 비해 알려진 정보가 적고, 화산의 원동력이 오리무중이어서 최근 다양한 화산 생성 모델이 제시되어 오고 있으며, 세계적인 관심을 끌고 있다.
나머지 울릉도와 제주도 역시 지표 근처의 지온구배(geothermal gradient)가 무척 높아 아직 하부의 마그마가 완전히 식지 않은 상태라는 것이 확인되어 있으나 현재 어떤 상태인지, 폭발 가능성이 있는지는 알려져 있지 않다.
한편, 전곡-철원 등지에 분포하는 현무암질 용암류는 앞서 언급한 주요 화산체보다는 살짝 오래된 암석들로 구성되어 있다.
이는 철원 지역에서 북동 방향으로 이어지는 이른바 추가령 지구대와 관련이 있다고 생각되고 있으나, 대부분의 추가령지구대가 북한에 있기 때문에 연구하기가 매우 곤란한 상황이다.
추가령 지구대는 현재 한반도가 압축 응력장을 받는 상태이므로, 다시 정단층이 발달하며 화산 활동을 재개한다고 말하기 어렵다.

 

5.1.1. 화산재 특보

 

  • 화산재 주의보: 화산재로 인해 피해가 우려될 때
  • 화산재 경보: 화산재로 인해 심각한 피해가 우려될 때

 

6. 이로운 점

 

  • 온천 및 관광
  • 지열발전 및 지역난방
  • 지질탐사
  • 농사
  • 지구온난화 완화

 

7. 주요 화산 및 화산 지형

 

 

내용이 도움이 되셨으면 공감 버튼 꼬옥 눌러주세요 

반응형

댓글